Transportation Asset Acquisition under a Newsvendor Model with Cutting-Stock Restrictions: Approximation and Decomposition Algorithms

Author:

Wagenaar Joris1ORCID,Fragkos Ioannis2ORCID,Faro W. L. C.3

Affiliation:

1. Zero Hunger Laboratory, Department of Econometrics and Operations Research, Tilburg School of Economics and Management, Tilburg University, Tilburg 5000 LE, Netherlands;

2. Department of Technology and Operations Management, Rotterdam School of Management, Erasmus University, 3062 Rotterdam, Netherlands;

3. BlueRock TMS, 5223’s-Hertogenbosch, Netherlands

Abstract

Logistics service providers use transportation assets to offer services to their customers. To cope with demand variability, they may acquire additional assets on a one-off (spot) basis. The planner’s problem is to determine the optimal level of assets acquired upfront, such that their cost is minimized, for a given planning horizon. Our formulation captures a nontrivial complication: Although ordering quantities are pertinent to asset acquisition, customer demand is in the form of service requests. Not only does each request have a stochastic duration, but also the total number of requests per customer is uncertain. We introduce a two-stage newsvendor model where demand for spot assets is derived through optimal cutting-stock patterns. Leveraging results from bin-packing, we propose polynomial algorithms that have worst-case guarantees for upper and lower bounds. Our method finds optimal solutions to instances intractable by commercial solvers. We investigate demand variability by means of a factorial experiment. We find that, whereas variability in the number of requests leads to higher costs, variability in each request’s duration can reduce costs. Finally, we demonstrate the modularity of our approach with two extensions: asset routing and outsourcing. Our results provide a practical approach to transportation asset acquisition and offer insights on the differing impact of demand uncertainty on the total acquisition cost. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.1201 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3