The Online Shortest Path Problem: Learning Travel Times Using a Multiarmed Bandit Framework

Author:

Lagos Tomás1ORCID,Auad Ramón2ORCID,Lagos Felipe3ORCID

Affiliation:

1. Discipline of Business Analytics, The University of Sydney, Sydney, New South Wales 2000, Australia;

2. Universidad Católica del Norte, Antofagasta 1240000, Chile;

3. Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago de Chile 7941169, Chile

Abstract

In the age of e-commerce, logistics companies often operate within extensive road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that fail to accurately capture the unique characteristics of the drivers and vehicles of the companies. In this work, we address the challenge faced by a logistic operator with limited travel time information, aiming to find the optimal expected shortest path between origin-destination pairs. We model this problem as an online shortest path problem, common to many last-mile routing settings; given a graph whose arcs’ travel times are stochastic and follow an unknown distribution, the objective is to find a vehicle route of minimum travel time from an origin to a destination. The planner progressively collects travel condition data as drivers complete their routes. Inspired by the combinatorial multiarmed bandit and kriging literature, we propose three methods with distinct features to effectively learn the optimal shortest path, highlighting the practical advantages of incorporating spatial correlation in the learning process. Our approach balances exploration (improving estimates for unexplored arcs) and exploitation (executing the minimum expected time path) using the Thompson sampling algorithm. In each iteration, our algorithm executes the path that minimizes the expected travel time based on data from a posterior distribution of the speeds of the arcs. We conduct a computational study comprising two settings: a set of four artificial instances and a real-life case study. The case study uses empirical data of taxis in the 17-km-radius area of the center of Beijing, encompassing Beijing’s “5th Ring Road.” In both settings, our algorithms demonstrate efficient and effective balancing of the exploration-exploitation trade-off.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Reference61 articles.

1. The impact of digital transformation on supply chains through e-commerce: Literature review and a conceptual framework

2. Audibert J-Y, Bubeck S, Munos R (2010) Best arm identification in multi-armed bandits. 23rd Conf. Learn. Theory (PMLR, New York), 41–53.

3. The Nonstochastic Multiarmed Bandit Problem

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3