The Electric Dial-a-Ride Problem on a Fixed Circuit

Author:

Molenbruch Yves12ORCID,Braekers Kris3ORCID,Eisenhandler Ohad4ORCID,Kaspi Mor5ORCID

Affiliation:

1. Research Foundation Flanders, 1000 Brussels, Belgium;

2. Mobility, Logistics and Automotive Technology Research Centre, Vrije Universiteit Brussel, 1050 Brussels, Belgium;

3. Research Group Logistics, Hasselt University, 3500 Hasselt, Belgium;

4. Department of Industrial Engineering, Afeka College of Engineering, Tel Aviv 6998812, Israel;

5. Department of Industrial Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel

Abstract

Shared mobility services involving electric autonomous shuttles have increasingly been implemented in recent years. Because of various restrictions, these services are currently offered on fixed circuits and operated with fixed schedules. This study introduces a service variant with flexible stopping patterns and schedules. Specifically, in the electric dial-a-ride problem on a fixed circuit (eDARP-FC), a fleet of capacitated electric shuttles operates on a given circuit consisting of a recharging depot and a sequence of stations where passengers can be picked up and dropped off. The shuttles may perform multiple laps, between which they may need to recharge. The goal of the problem is to determine the vehicles’ stopping sequences and schedules, including recharging plans, so as to minimize a weighted sum of the total passenger excess time and the total number of laps. The eDARP-FC is formulated as a nonstandard lap-based mixed integer linear programming and is shown to be NP-Hard. Efficient polynomial time algorithms are devised for two special scheduling subproblems. These algorithms and several heuristics are then applied as subroutines within a large neighborhood search metaheuristic. Experiments on instances derived from a real-life system demonstrate that the flexible service results in a 32%–75% decrease in the excess time at the same operational costs. Funding: This work was supported by the Fonds Wetenschappelijk Onderzoek [Project Data-Driven Logistics: Grant S007318N; Project Optimizing the Design of a Hybrid Urban Mobility System: Grant G020222N; and Grant OR4Logistics]. Y. Molenbruch is partially funded by the Fonds Wetenschappelijk Onderzoek [Grant 1202719N]. The computational resources and services used in this work were provided by the Flemish Supercomputer Center funded by the Fonds Wetenschappelijk Onderzoek and the Flemish Government. Supplemental Material: The electronic companion is available at https://doi.org/10.1287/trsc.2023.1208 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3