The Value of Limited Flexibility in Service Network Designs

Author:

Baubaid Ahmad12ORCID,Boland Natashia1ORCID,Savelsbergh Martin1ORCID

Affiliation:

1. H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;

2. Department of Systems Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

Abstract

Less-than-truckload carriers rely on the consolidation of freight from multiple shippers to achieve economies of scale. Collected freight is routed through a number of transfer terminals at each of which shipments are grouped together for the next leg of their journeys. We study the service network design problem confronted by these carriers. This problem includes determining (1) the number of services (trailers) to operate between each pair of terminals and (2) a load plan, which specifies the sequence of transfer terminals that freight with a given origin and destination will visit. Traditionally, for every terminal and every ultimate destination, a load plan specifies a unique next terminal. We introduce the [Formula: see text]-alt model, which generalizes traditional load plans by allowing decision makers to specify a desired number of next-terminal options for terminal–destination pairs using a vector [Formula: see text]. We compare a number of exact and heuristic approaches for solving a two-stage stochastic variant of the [Formula: see text]-alt model. Using this model, we show that, by explicitly considering demand uncertainty and by merely allowing up to two next-terminal options for terminal–destination pairs in the load plans, carriers can generate substantial cost savings that are comparable to the ones yielded by adopting load plans that allow for any next terminal to be a routing option for terminal–destination pairs. Moreover, by using these more flexible load plans, carriers can generate savings on the order of 10% over traditional load plan designs obtained by deterministic models.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3