Dynamic Courier Capacity Acquisition in Rapid Delivery Systems: A Deep Q-Learning Approach

Author:

Auad Ramon12ORCID,Erera Alan1ORCID,Savelsbergh Martin1ORCID

Affiliation:

1. School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;

2. Department of Industrial Engineering, Universidad Católica del Norte, Antofagasta 1240000, Chile

Abstract

With the recent boom of the gig economy, urban delivery systems have experienced substantial demand growth. In such systems, orders are delivered to customers from local distribution points respecting a delivery time promise. An important example is a restaurant meal delivery system, where delivery times are expected to be minutes after an order is placed. The system serves orders by making use of couriers that continuously perform pickups and deliveries. Operating such a rapid delivery system is very challenging, primarily because of the high service expectations and the considerable uncertainty in both demand and delivery capacity. Delivery providers typically plan courier shifts for an operating period based on a demand forecast. However, because of the high demand volatility, it may at times during the operating period be necessary to adjust and dynamically add couriers. We study the problem of dynamically adding courier capacity in a rapid delivery system and propose a deep reinforcement-learning approach to obtain a policy that balances the cost of adding couriers and the cost-of-service quality degradation because of insufficient delivery capacity. Specifically, we seek to ensure that a high fraction of orders is delivered on time with a small number of courier hours. A computational study in the meal delivery space shows that a learned policy outperforms policies representing current practice and demonstrates the potential of deep learning for solving operational problems in highly stochastic logistic settings. History: This paper has been accepted for the Transportation Science Special Issue on Machine-Learning Methods and Applications in Large-Scale Route Planning Problems. Funding: This work was supported by Agencia Nacional de Investigación y Desarrollo [72180404]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2022.0042 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3