Ex Post Path Choice Estimation for Urban Rail Systems Using Smart Card Data: An Aggregated Time-Space Hypernetwork Approach

Author:

Mo Baichuan1ORCID,Ma Zhenliang2ORCID,Koutsopoulos Haris N.3,Zhao Jinhua4ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

2. Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm 11428, Sweden;

3. Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115;

4. Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

This paper proposes an ex post path choice estimation framework for urban rail systems using an aggregated time-space hypernetwork approach. We aim to infer the actual passenger flow distribution in an urban rail system for any historical day using the observed automated fare collection (AFC) data. By incorporating a schedule-based dynamic transit network loading (SDTNL) model, the framework captures the crowding correlation among stations and the interaction between the path choice and passenger left behind, which is important for the path choice estimation in a “near-capacity” operated urban rail system. The path choice estimation is formulated as an optimization problem, which aims to minimize the difference between the model-derived and observed information with path choice parameters as decision variables. The original problem is intractable because of nonlinear (logit model) and nonanalytical (SDTNL) constraints. A solution procedure is proposed to decompose the original problem into three tractable subproblems, which can be solved efficiently. Solving the decomposed problem is equivalent to finding a fixed point. We prove that the solution to the original problem is the same as the decomposed problem (i.e., the fixed point) when passenger path choices follow the predefined behavior model. If this condition does not hold, the solution of the original problem is proved to be an “almost fixed point” for the decomposed problem. The model is validated using both synthetic and real-world AFC data from a major urban railway system. The analysis with synthetic data validates the model’s effectiveness in estimating path choice parameters and left behind probabilities, which outperforms state-of-art simulation-based optimization methods and probabilistic models in both accuracy and efficiency. The analysis using actual data shows that the estimated path shares are more reasonable than the baseline uniform path shares and survey-derived path shares. The model estimation is robust to different initial parameter values and AFC data from various dates. Funding: The project is partially funded by the TRENoP Strategic Research funding at KTH. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.1177 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3