Dynamic Vehicle Allocation Policies for Shared Autonomous Electric Fleets

Author:

Dong Yuxuan12ORCID,De Koster René3ORCID,Roy Debjit4ORCID,Yu Yugang5ORCID

Affiliation:

1. Sino-US Global Logistics Institute, Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200030, China;

2. Anhui Province Key Laboratory of Contemporary Logistics and Supply Chain, School of Management, University of Science and Technology of China, Hefei 230026, China;

3. Rotterdam School of Management, Erasmus University, 3062 PA Rotterdam, Netherlands;

4. Indian Institute of Management Ahmedabad, Ahmedabad, 380015 Gujarat, India;

5. Anhui Province Key Laboratory of Contemporary Logistics and Supply Chain & International Institute of Finance, School of Management, University of Science and Technology of China, Hefei 230026, China

Abstract

In the future, vehicle sharing platforms for passenger transport will be unmanned, autonomous, and electric. These platforms must decide which vehicle should pick up which type of customer based on the vehicle’s battery level and customer’s travel distance. We design dynamic vehicle allocation policies for matching appropriate vehicles to customers using a Markov decision process model. To obtain the model parameters, we first model the system as a semi-open queuing network (SOQN) with multiple synchronization stations. At these stations, customers with varied battery demands are matched with semi-shared vehicles that hold sufficient remaining battery levels. If a vehicle’s battery level drops below a threshold, it is routed probabilistically to a nearby charging station for charging. We solve the analytical model of the SOQN and obtain approximate system performance measures, which are validated using simulation. With inputs from the SOQN model, the Markov decision process minimizes both customer waiting cost and lost demand and finds a good heuristic vehicle allocation policy. The experiments show that the heuristic policy is near optimal in small-scale networks and outperforms benchmark policies in large-scale realistic scenarios. An interesting finding is that reserving idle vehicles to wait for future short-distance customer arrivals can be beneficial even when long-distance customers are waiting.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3