Synchronized Deliveries with a Bike and a Self-Driving Robot

Author:

Zhao Yanlu1ORCID,Cattaruzza Diego2ORCID,Kang Ningxuan3,Roberti Roberto4ORCID

Affiliation:

1. Durham University Business School, Durham University, Durham DH1 3LB, United Kingdom;

2. University of Lille, CNRS, Centrale Lille, Inria UMR 9189–Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France;

3. Department of Intelligent Supply Chain Y, JD.com, Beijing 101111, China;

4. Department of Information Engineering, University of Padova, 35131 Padova, Italy

Abstract

Online e-commerce giants are continuously investigating innovative ways to improve their practices in last-mile deliveries. Inspired by the current practices at JD.com (the largest online retailer by revenue in China), we investigate a delivery problem that we call the traveling salesman problem with bike and robot (TSPBR), where a cargo bike is aided by a self-driving robot to deliver parcels to customers in urban areas. We present two mixed-integer linear programming models and describe a set of valid inequalities to strengthen their linear relaxation. We show that these models can yield optimal solutions of TSPBR instances with up to 60 nodes. To efficiently find heuristic solutions, we also present a genetic algorithm based on a dynamic programming recursion that efficiently explores large neighborhoods. We computationally assess this genetic algorithm on instances provided by JD.com and show that high-quality solutions can be found in a few minutes of computing time. Finally, we provide some managerial insights to assess the impact of deploying the bike-and-robot tandem to deliver parcels in the TSPBR setting.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3