Robust Tactical Crew Scheduling Under Uncertain Demand

Author:

Rählmann Christian1,Wagener Felix1,Thonemann Ulrich W.1ORCID

Affiliation:

1. University of Cologne, D-50923 Cologne, Germany

Abstract

We analyze a tactical freight railway crew scheduling problem, when train drivers must be informed several weeks before operations about the start and end times and locations of their duties. Between informing the train drivers and start of operations, trip demand changes due to cancellations, new bookings, and reroutings of trains, which might result in mismatches between train driver capacity at a location and demand. We analyze an approach that incorporates uncertain trip demand as scenarios, such that the start and end times and locations of the duties of a crew schedule are recoverable robust against deviations in trip demand. We develop a column generation solution method that dynamically aggregates trips to duties and decomposes the subproblems into smaller, computationally tractable instances. Our model determines duty frames that cover duties in many scenarios, creating recoverable robust crew schedules. We test our model on three real data sets of a major European freight railway operator. Our results show that our schedules are considerably more recoverable robust than those of the nominal solution, resulting in smaller mismatches between train driver capacity and demand.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Reference16 articles.

1. Abbink EJW (2014) Crew management in passenger rail transport. ERIM Ph.D. Series Research in Management, vol. 325 (ERIM, Rotterdam, the Netherlands).

2. Real-time train driver rescheduling by actor-agent techniques

3. Personnel scheduling in a complex logistic system: a railway application case

4. The Price of Robustness

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3