Fleet Sizing and Service Region Partitioning for Same-Day Delivery Systems

Author:

Banerjee Dipayan1ORCID,Erera Alan L.1,Toriello Alejandro1ORCID

Affiliation:

1. H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract

We study the linked tactical design problems of fleet sizing and partitioning a service region into vehicle routing zones for same-day delivery (SDD) systems. Existing SDD studies focus primarily on operational dispatch problems and do not consider system design questions. Prior work on SDD system design has not considered the fleet sizing decision when a service region may be partitioned into zones dedicated to individual vehicles; such designs have been shown to improve system efficiency in related vehicle routing settings. Using continuous approximations to capture average-case operational behavior, we consider first the problem of independently maximizing the area of a single-vehicle delivery zone. We characterize area-maximizing dispatching policies and leverage these results to develop a procedure for calculating optimal areas as a function of a zone’s distance from the depot, given a maximum number of daily dispatches per vehicle. We then demonstrate how to derive fleet sizes from optimal area functions and propose an associated Voronoi approach to partition the service region into single-vehicle zones. We test the fleet sizing and partitioning approach in a computational study that considers two different service regions and demonstrate its pragmatism and effectiveness via an operational simulation. Using minimal computation, the approach specifies fleet sizes and builds vehicle delivery zones that meet operational requirements, verified by simulation results.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3