Understanding Origin-Destination Ride Demand with Interpretable and Scalable Nonnegative Tensor Decomposition

Author:

Li Xiaoyue1,Sun Ran2ORCID,Sharpnack James1,Fan Yueyue2ORCID

Affiliation:

1. Statistics Department, University of California, Davis, California 95616;

2. Civil and Environmental Engineering Department, University of California, Davis, California 95616

Abstract

This paper focuses on the estimation and compression of ride demand from origin-destination (OD) trip event data. By representing the OD event data as a three-way tensor (origin, destination, and time), we model the data as a Poisson process with an intensity tensor that can be decomposed according to a Tucker decomposition. We establish and justify a specific form of nonnegative Tucker-like tensor decomposition that represents OD demand via K latent origin spatial factors and K latent destination spatial factors. We then provide a computational and memory efficient algorithm for performing this decomposition and demonstrate its use for real-time compression and estimation of OD ride demand. Two case studies based on New York City (NYC) taxi and Washington DC (DC) taxi were implemented. Results from the case studies demonstrate the applicability of the proposed method in data compression and short-term forecast for ride demand. Furthermore, we found that the learned latent spatial factors are interpretable and localized to specific areas for both NYC and DC cases. Hence, this method can be used to understand OD trip data through latent spatial factors and be used to identify spatio-temporal patterns for OD trip and travel demand generation mechanism in general. Funding: This work was supported by the U.S. Department of Transportation [UTC/NCST] and the U.S. National Science Foundation [Grant DMS 1712996]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0101 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3