Affiliation:
1. Walmart Labs, Sunnyvale, California 94086;
2. Walmart, Bentonville, Arkansas 72716
Abstract
We developed a novel multiobjective markdown system and deployed it across many merchandising units at Walmart. The objectives of this system are to (1) clear the stores’ excess inventory by a specified date, (2) improve revenue by minimizing the discounts needed to clear shelves, and (3) reduce the substantial cost to relabel merchandise in the stores. The underlying mathematical approach uses techniques such as deep reinforcement learning, simulation, and optimization to determine the optimal (marked-down) price. Starting in 2019, after six months of extensive testing, we implemented the new approach across all Walmart stores in the United States. The result was a high-performance model with a price-adjustment policy tailored to each store. Walmart increased its sell-through rate (i.e., the number of units sold during the markdown period divided by its inventory at the beginning of the markdown) by 21% and reduced its costs by 7%. Benefits that Walmart accrues include demographics-based store personalization, reductions in operating costs with limited numbers of price adjustments, and a dynamic time window for markdowns.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Management of Technology and Innovation,Management Science and Operations Research,Strategy and Management
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献