Affiliation:
1. Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065;
2. Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
Abstract
Each year, approximately 18 million new cancer cases are diagnosed worldwide, and about half must be treated with radiotherapy. A successful treatment requires treatment planning with the customization of penetrating radiation beams to sterilize cancerous cells without harming nearby normal organs and tissues. This process currently involves extensive manual tuning of parameters by an expert planner, making it a time-consuming and labor-intensive process, with quality and immediacy of critical care dependent on the planner’s expertise. To improve the speed, quality, and availability of this highly specialized care, Memorial Sloan Kettering Cancer Center developed and applied advanced optimization tools to this problem (e.g., using hierarchical constrained optimization, convex approximations, and Lagrangian methods). This resulted in both a greatly improved radiotherapy treatment planning process and the generation of reliable and consistent high-quality plans that reflect clinical priorities. These improved techniques have been the foundation of high-quality treatments and have positively impacted over 5,000 patients to date, including numerous patients in severe pain and in urgent need of treatment who might have otherwise required longer hospital stays or undergone unnecessary surgery to control the progression of their disease. We expect that the wide distribution of the system we developed will ultimately impact patient care more broadly, including in resource-constrained countries.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献