Bombardier Aftermarket Demand Forecast with Machine Learning

Author:

Dodin Pierre1,Xiao Jingyi2,Adulyasak Yossiri3ORCID,Alamdari Neda Etebari4,Gauthier Lea4,Grangier Philippe4,Lemaitre Paul4,Hamilton William L.5

Affiliation:

1. Bombardier, Saint-Laurent, Quebec H4R 1K2, Canada;

2. HEC Montréal, Montreal, Quebec H3T 2A7, Canada;

3. GERAD and Department of Logistics and Operations Management, HEC Montréal, Montreal, Quebec H3T 2A7, Canada;

4. IVADO Labs, Montreal, Quebec H2S 3J9, Canada;

5. Mila–Quebec AI Institute and School of Computer Science, McGill University, Montreal, Quebec H3A 2A7, Canada

Abstract

Intermittent demand patterns are commonly present in business aircraft spare parts supply chains. Because of the infrequent arrivals and large variations in demand, aircraft aftermarket demand is difficult to forecast, which often leads to shortages or overstocking of spare parts. In this paper, we present the development and implementation of an advanced analytics framework at Bombardier Aerospace, which is carried out by the Bombardier inventory planning team and IVADO Labs to improve the aftermarket demand forecasting process. This integrated predictive analytics pipeline leverages machine-learning (ML) models and traditional time series models in a single framework in a systematic fashion. We also make use of a tree-based machine-learning method with a large set of input features to estimate two components of intermittent demand, namely demand sizes and interdemand intervals. Through the ML models, we incorporate different features, including those derived from flight data. Outputs of different forecasting models are combined using an ensemble technique that enhances the robustness and accuracy of the forecasts for different groups of aftermarket spare parts categorized by demand patterns. The validation results show an improvement in forecast accuracy of approximately 7% and in unbiased forecast of 5%. The ML-based Bombardier Aftermarket forecasting system has been successfully deployed and used to forecast the aftermarket demand at Bombardier of more than 1 billion Canadian dollars on a regular basis. History: This paper was refereed.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3