Operations Research Helps the Optimal Bidding of Virtual Power Plants

Author:

Kim Daeho1,Cheon Hyungkyu1,Choi Dong Gu12ORCID,Im Seongbin3

Affiliation:

1. Department of Industrial and Management Engineering, Pohang University of Science and Technology, Gyeongbuk 37673, Republic of Korea;

2. Open Innovation Big Data Center, Pohang University of Science and Technology, Gyeongbuk 37673, Republic of Korea;

3. H Energy Co. Ltd., Gyeongbuk 37666, Republic of Korea

Abstract

As distributed energy resources (DERs) continue to emerge, a new cloud-based information technology platform business model, the virtual power plant (VPP), is being introduced into the electricity market. The competitiveness of VPPs mainly depends on data analytics and operational technologies. Among the several operational problems, we focus on the optimal bidding decision problem in the day-ahead market. The bidding decision is a VPP’s commitment to supply the market with electricity from uncertain DERs, thereby affecting the VPP’s profits. Based on a collaboration with a VPP company in South Korea, H Energy Co. Ltd., we formulate a Markov decision process model for the problem and use a stochastic dynamic programming-based solution approach. This is the first study under the incentive-based market structure. To describe the uncertainty in the power supply from DERs, we build frameworks to generate scenario trees or lattices. Additionally, we apply heuristic techniques to reduce the computational burden. Through a pilot test based on real data, we verify the performance and practicality of our proposed model and solution approach. The case company has begun implementing the model and solution approach on its platform and has found that performance has improved after using advanced forecasting models for DERs.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Reference40 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3