Reducing Hospital Readmission Risk Using Predictive Analytics

Author:

Mann Arti1ORCID,Cleveland Ben2,Bumblauskas Dan34ORCID,Kaparthi Shashidhar1ORCID

Affiliation:

1. Wilson College of Business, University of Northern Iowa, Cedar Falls, Iowa 50614;

2. UnityPoint Health, West Des Moines, Iowa 50266;

3. Missouri Western State University, St Joseph, Missouri 64507;

4. PFC Services, Inc., Marietta, Georgia 30066

Abstract

This study highlights the development and application of a predictive analytics system in a Midwestern hospital to assess and manage the risk of patient readmissions within 30 days of discharge. By integrating advanced analytical modeling with electronic health records, the system enables the creation of personalized care plans by accurately predicting patients' readmission risks and the optimal timing for interventions. The results suggest that such models can significantly improve resource allocation and the personalization of care plans, thereby reducing unnecessary readmissions and aligning with value-based, patient-centered healthcare goals.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3