Algorithm for Robotic Picking in Amazon Fulfillment Centers Enables Humans and Robots to Work Together Effectively

Author:

Allgor Russell1,Cezik Tolga1,Chen Daniel1ORCID

Affiliation:

1. Amazon.com, Seattle, Washington 98109

Abstract

This paper describes how Amazon redesigned the robotic picking algorithm used in Amazon Robotics (AR) fulfillment centers (FCs) to enable humans and robots to work together effectively. In AR FCs, robotic drives fetch storage pods filled with inventory for associates to pick. The picking algorithm needs to decide which specific units of inventory on which pods should be picked to fulfill customer order shipments. We want to do so in a way that is most efficient and distance traveled by drives per unit picked is the key performance metric. This new algorithm reduced the distance traveled by drives per unit picked by 62% without negative operational impact and has since been implemented in all AR FCs. This improvement reduced the number of drives required in AR FCs by 31%, which amounted to half a billion dollars in savings. The redesigned algorithm enabled seamless collaboration between associates and robots, and its effectiveness in scaling up convinced Amazon to make AR FCs the standard for new FCs, allowing Amazon to reduce the storage footprint by about 29% compared with non-AR FCs. History: This paper was refereed.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3