Choice-Based Dynamic Pricing for Vacation Rentals

Author:

Wang Yaping1,McGuire Kelly2,Terbush Jeremy3,Towns Michael4,Anderson Chris K.5ORCID

Affiliation:

1. Verizon, New York, New York 10007;

2. ZS Associates, Washington District of Columbia 20814;

3. Simon Property Group, Indianapolis, Indiana 46204;

4. RCI/Wyndham Destinations, Tuxedo Park, New York 10987;

5. SC Johnson College of Business, School of Administration, Cornell University, Ithaca, New York 14853

Abstract

In this paper, we propose a new dynamic pricing approach for the vacation rental revenue management problem. The proposed approach is based on a conditional logistic regression that predicts the purchasing probability for rental units as a function of various factors, such as lead time, availability, property features, and market selling prices. In order to estimate the price sensitivity throughout the booking horizon, a rolling window technique is provided to smooth the impact over time and build a consistent estimation. We apply a nonlinear optimization algorithm to determine optimal prices to maximize the revenue, considering current demand, availability from both the rental company and its competitors, and the price sensitivity of the rental guest. A booking curve heuristic is used to align the booking pace with business targets and feed the adjustments back into the optimization routine. We illustrate the proposed approach by successfully applying it to the revenue management problem of Wyndham Destinations vacation rentals. Model performance is evaluated by pricing two regions within the Wyndham network for part of the 2018 vacation season, indicating revenue per unit growth of 3.5% and 5.2% (for the two regions) through model use.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3