Improving Mathematical Exposition of an Industrial-Scale Linear Program

Author:

Greivel Gus1,Newman Alexandra1ORCID,Brown Maxwell2,Eurek Kelly2ORCID

Affiliation:

1. Operations Research with Engineering Graduate Program, Applied Mathematics and Statistics Department, Colorado School of Mines, Golden, Colorado 80401;

2. National Renewable Energy Laboratory, Golden, Colorado 80401

Abstract

Industrial-scale models require considerable setup time; hence, once built, they are used in myriad ways to consider closely related cases. In practice, the code for these models frequently evolves without appropriate notational choices, largely as a result of the lengthy development time of, and the number of individuals contributing to, their formulation. This leads to inefficiencies and obfuscates model structures that might be leveraged to expedite solutions. In this paper, we advocate for an emerging literature on model formulation “best practices” and present the reformulation of a widely used industrial-scale linear program. The efficient mathematical expression of this linear program, used to plan capacity expansion in the energy sector, allows for greater transparency of model structures and enhanced ability to identify computational performance improvements, as well as a lucid interpretation of its solutions. This type of formulation is employed in several mathematical programming courses at our university as an example of the advantages of best practices; the model more broadly is used widely to inform policy in the U.S. energy sector. Funding: This work was supported by the National Renewable Energy Laboratory (Laboratory Directed Research and Development program).

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Education,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3