Affiliation:
1. Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801;
2. Department of Computer Science, Princeton University, Princeton, New Jersey 08540
Abstract
In the field of distributed consensus and blockchains, the synchronous communication model assumes that all messages between honest parties are delayed by at most a known constant Δ. Recent literature establishes that the longest-chain blockchain protocol is secure under synchronous communication. However, these security guarantees degrade with Δ. In real-world networks, communication delays may occasionally be far more than their typical value. In such a scenario, the security guarantees based on the synchronous model may be overly pessimistic, because they are based on the worst-case delay. This work analyzes the longest-chain protocol under a new network model that assumes the communication delays are random, independent, and identically distributed. The model allows for delay distributions with unbounded support. The main result of this paper is a security guarantee for the longest-chain protocol operating under this model. Our security results depend on the probability that delays exceed the interblock time period, rather than on the worst-case delay. We provide simple, explicit bounds on the security-violation probability that decays exponentially with the security parameter. Under network conditions where delays are sporadically large, our results can provide better security guarantees than prior work. Funding: This work was supported in part by NSF [Grant CCF 19-00636].
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Management Science and Operations Research,Statistics, Probability and Uncertainty,Modeling and Simulation,Statistics and Probability