Interpretable Prediction Rules for Congestion Risk in Intensive Care Units

Author:

Bravo Fernanda1ORCID,Rudin Cynthia2,Shaposhnik Yaron3ORCID,Yuan Yuting4ORCID

Affiliation:

1. Anderson School of Management, University of California, Los Angeles, California 90024;

2. Departments of Computer Science, Electrical and Computer Engineering, Statistical Science, Mathematics, and Biostatistics & Bioinformatics, Duke University, Durham, North Carolina 27708;

3. Simon Business School, University of Rochester, Rochester, New York 14627;

4. Department of Mathematics, William & Mary, Williamsburg, Virginia 23185

Abstract

We study the problem of predicting congestion risk in intensive care units (ICUs). Congestion is associated with poor service experience, high costs, and poor health outcomes. By predicting future congestion, decision makers can initiate preventive measures, such as rescheduling activities or increasing short-term capacity, to mitigate the effects of congestion. To this end, we consider well-established queueing models of ICUs and define “high-risk states” as system states that are likely to lead to congestion in the near future. We strive to formulate rules for determining whether a given system state is high risk. We design the rules to be interpretable (informally, easy to understand) for their practical appeal to stakeholders. We show that for simple Markovian queueing systems, such as the [Formula: see text] queue with multiple patient classes, our rules take the form of linear and quadratic functions on the state space. For more general queueing systems, we employ methods from queueing theory, simulation, and machine learning (ML) to devise interpretable prediction rules, and we demonstrate their effectiveness through an extensive computational study, which includes a large-scale ICU model validated using data. Our study shows that congestion risk can be effectively and transparently predicted using linear ML models and interpretable features engineered from the queueing model representation of the system. History: This paper has been accepted for the Service Science/Stochastic Systems Joint Special Issue. Supplemental Material: The online appendix is available at https://doi.org/10.1287/stsy.2022.0018 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Statistics, Probability and Uncertainty,Modeling and Simulation,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3