Customer-Server Population Dynamics in Heavy Traffic

Author:

Atar Rami1ORCID,Karmakar Prasenjit1,Lipshutz David1ORCID

Affiliation:

1. Viterbi Faculty of Electrical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel

Abstract

We study a many-server queueing model with server vacations, where the population size dynamics of servers and customers are coupled: a server may leave for vacation only when no customers await, and the capacity available to customers is directly affected by the number of servers on vacation. We focus on scaling regimes in which server dynamics and queue dynamics fluctuate at matching time scales so that their limiting dynamics are coupled. Specifically, we argue that interesting coupled dynamics occur in (a) the Halfin–Whitt regime, (b) the nondegenerate slowdown regime, and (c) the intermediate near Halfin–Whitt regime, whereas the dynamics asymptotically decouple in the other heavy-traffic regimes. We characterize the limiting dynamics, which are different for each scaling regime. We consider relevant respective performance measures for regimes (a) and (b)—namely, the probability of wait and the slowdown. Although closed-form formulas for these performance measures have been derived for models that do not accommodate server vacations, it is difficult to obtain closed-form formulas for these performance measures in the setting with server vacations. Instead, we propose formulas that approximate these performance measures and depend on the steady-state mean number of available servers and previously derived formulas for models without server vacations. We test the accuracy of these formulas numerically.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Statistics, Probability and Uncertainty,Modelling and Simulation,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3