Affiliation:
1. Viterbi Faculty of Electrical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
Abstract
We study a many-server queueing model with server vacations, where the population size dynamics of servers and customers are coupled: a server may leave for vacation only when no customers await, and the capacity available to customers is directly affected by the number of servers on vacation. We focus on scaling regimes in which server dynamics and queue dynamics fluctuate at matching time scales so that their limiting dynamics are coupled. Specifically, we argue that interesting coupled dynamics occur in (a) the Halfin–Whitt regime, (b) the nondegenerate slowdown regime, and (c) the intermediate near Halfin–Whitt regime, whereas the dynamics asymptotically decouple in the other heavy-traffic regimes. We characterize the limiting dynamics, which are different for each scaling regime. We consider relevant respective performance measures for regimes (a) and (b)—namely, the probability of wait and the slowdown. Although closed-form formulas for these performance measures have been derived for models that do not accommodate server vacations, it is difficult to obtain closed-form formulas for these performance measures in the setting with server vacations. Instead, we propose formulas that approximate these performance measures and depend on the steady-state mean number of available servers and previously derived formulas for models without server vacations. We test the accuracy of these formulas numerically.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Management Science and Operations Research,Statistics, Probability and Uncertainty,Modelling and Simulation,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献