Extreme Value Analysis for a Markov Additive Process Driven by a Nonirreducible Background Chain

Author:

van Kreveld Lucas1ORCID,Mandjes Michel123,Dorsman Jan-Pieter1

Affiliation:

1. Korteweg-de Vries Institute for Mathematics, University of Amsterdam, 1098 XH Amsterdam, Netherlands;

2. Eurandom, Eindhoven University of Technology, 5612 AZ Eindhoven, Netherlands;

3. Amsterdam Business School, Faculty of Economics and Business, University of Amsterdam, 1098 XH Amsterdam, Netherlands

Abstract

A common assumption in the vast literature on the extremes of spectrally one-sided Markov additive processes (MAPs) is that the continuous-time Markov chain that serves as the background process is irreducible. In the present paper, we consider, motivated by, for example, applications in credit risk, the case in which the irreducibility condition has been lifted, thus allowing the presence of one or more transient classes. More specifically, we consider the distribution of the maximum when the MAP under study has only positive jumps (the spectrally positive case) or negative jumps (the spectrally negative case). The methodology used relies on two crucial previous results: (i) the Wiener–Hopf decomposition for Lévy processes and, in particular, its explicit form in spectrally one-sided cases and (ii) a result on the number of singularities of the matrix exponent of a spectrally one-sided MAP. In both the spectrally positive and negative cases, we derive a system of linear equations of which the solution characterizes the distribution of the maximum of the process. As a by-product of our results, we develop a procedure for calculating the maximum of a spectrally one-sided Lévy process over a phase-type distributed time interval.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Statistics, Probability and Uncertainty,Modeling and Simulation,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cramér–Lundberg asymptotics for spectrally positive Markov additive processes;Scandinavian Actuarial Journal;2023-11-16

2. Regime Switching;Springer Actuarial;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3