Managing Appointment Booking Under Customer Choices

Author:

Liu Nan1ORCID,van de Ven Peter M.2,Zhang Bo3

Affiliation:

1. Operations Management Department, Carroll School of Management, Boston College, Chestnut Hill, Massachusetts 02467;

2. Centrum Wiskunde & Informatica, 1098 XG Amsterdam, Netherlands;

3. IBM Research AI, Yorktown Heights, New York 10598

Abstract

Motivated by the increasing use of online appointment booking platforms, we study how to offer appointment slots to customers to maximize the total number of slots booked. We develop two models, nonsequential offering and sequential offering, to capture different types of interactions between customers and the scheduling system. In these two models, the scheduler offers either a single set of appointment slots for the arriving customer to choose from or multiple sets in sequence, respectively. For the nonsequential model, we identify a static randomized policy, which is asymptotically optimal when the system demand and capacity increase simultaneously, and we further show that offering all available slots at all times has a constant factor of two performance guarantee. For the sequential model, we derive a closed form optimal policy for a large class of instances and develop a simple, effective heuristic for those instances without an explicit optimal policy. By comparing these two models, our study generates useful operational insights for improving the current appointment booking processes. In particular, our analysis reveals an interesting equivalence between the sequential offering model and the nonsequential offering model with perfect customer preference information. This equivalence allows us to apply sequential offering in a wide range of interactive scheduling contexts. Our extensive numerical study shows that sequential offering can significantly improve the slot fill rate (6%–8% on average and up to 18% in our testing cases) compared with nonsequential offering. Given the recent and ongoing growth of online and mobile appointment booking platforms, our research findings can be particularly useful to inform user interface design of these booking platforms. This paper was accepted by Gad Allon, operations management.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3