How Do Product Attributes and Reviews Moderate the Impact of Recommender Systems Through Purchase Stages?

Author:

Lee Dokyun1ORCID,Hosanagar Kartik2ORCID

Affiliation:

1. Carnegie Mellon University, Pittsburgh, Pennsylvania 15213;

2. The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Abstract

We investigate the moderating effect of product attributes and review ratings on views, conversion|views (conversion conditional on views), and final conversion of a purchase-based collaborative filtering recommender system on an e-commerce site. We run a randomized field experiment on a top retailer with 184,375 users split into a recommender-treated group and a control group. We tag theory-driven attributes of 37,125 unique products via Amazon Mechanical Turk to augment the usual product data (e.g., review ratings, descriptions). By examining the recommender’s impact through different stages—awareness (views), salience (conversion|views), and final conversion—and across product types, we provide nuanced insights. The study confirms that the recommender increases views, conversion|views, and final conversion rates by 15.3%, 21.6%, and 7.5%, respectively, but this lift is moderated by product attributes and review ratings. We find that the lift on product views is greater for utilitarian products compared with hedonic products as well as for experience products compared with search products. In contrast, the lift on conversion|views rate is greater for hedonic products compared with utilitarian products. Furthermore, the lift on views rate is greater for products with higher average review ratings, which suggests that a recommender acts as a complement to review ratings, whereas the opposite is true for conversion|views, where recommender and review ratings are substitutes. Additionally, a recommender’s awareness lift is greater than its saliency impact. We discuss the potential mechanisms behind our results as well as their managerial implications. This paper was accepted by David Simchi-Levi, information systems.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Reference81 articles.

1. Adomavicius G, Bockstedt J, Curley S, Zhang J (2011) Recommender systems, consumer preferences, and anchoring effects. RecSys 2011 Workshop Human Decision Making Recommender Systems (Elsevier, New York), 35–42.

2. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions

3. Interaction terms in logit and probit models

4. Mostly Harmless Econometrics

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3