Targeting Prospective Customers: Robustness of Machine-Learning Methods to Typical Data Challenges

Author:

Simester Duncan1ORCID,Timoshenko Artem1ORCID,Zoumpoulis Spyros I.2ORCID

Affiliation:

1. Marketing, MIT Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

2. Decision Sciences, INSEAD, 77300 Fontainebleau, France

Abstract

We investigate how firms can use the results of field experiments to optimize the targeting of promotions when prospecting for new customers. We evaluate seven widely used machine-learning methods using a series of two large-scale field experiments. The first field experiment generates a common pool of training data for each of the seven methods. We then validate the seven optimized policies provided by each method together with uniform benchmark policies in a second field experiment. The findings not only compare the performance of the targeting methods, but also demonstrate how well the methods address common data challenges. Our results reveal that when the training data are ideal, model-driven methods perform better than distance-driven methods and classification methods. However, the performance advantage vanishes in the presence of challenges that affect the quality of the training data, including the extent to which the training data captures details of the implementation setting. The challenges we study are covariate shift, concept shift, information loss through aggregation, and imbalanced data. Intuitively, the model-driven methods make better use of the information available in the training data, but the performance of these methods is more sensitive to deterioration in the quality of this information. The classification methods we tested performed relatively poorly. We explain the poor performance of the classification methods in our setting and describe how the performance of these methods could be improved. This paper was accepted by Matthew Shum, marketing.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3