How to Play Fantasy Sports Strategically (and Win)

Author:

Haugh Martin B.1ORCID,Singal Raghav2ORCID

Affiliation:

1. Imperial College Business School, Imperial College London, London SW7 2AZ, United Kingdom;

2. Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027

Abstract

Daily fantasy sports (DFS) is a multibillion-dollar industry with millions of annual users and widespread appeal among sports fans across a broad range of popular sports. Building on recent work, we provide a coherent framework for constructing DFS portfolios where we explicitly model the behavior of other DFS players. We formulate an optimization problem that accurately describes the DFS problem for a risk-neutral decision maker in both double-up and top-heavy payoff settings. Our formulation maximizes the expected reward subject to feasibility constraints, and we relate this formulation to mean-variance optimization and the outperformance of stochastic benchmarks. Using this connection, we show how the problem can be reduced to the problem of solving a series of binary quadratic programs. We also propose an algorithm for solving the problem where the decision maker can submit multiple entries to the DFS contest. This algorithm is motivated by submodularity properties of the objective function and by some new results on parimutuel betting. One of the contributions of our work is the introduction of a Dirichlet-multinomial data-generating process for modeling opponents’ team selections, and we estimate the parameters of this model via Dirichlet regressions. A further benefit to modeling opponents’ team selections is that it enables us to estimate the value, in a DFS setting, of both insider trading and collusion. We demonstrate the value of our framework by applying it to DFS contests during the 2017 National Football League season. This paper was accepted by Baris Ata, stochastic models and simulation.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3