Ancillary Services in Targeted Advertising: From Prediction to Prescription

Author:

Borenstein Alison1,Mangal Ankit1,Perakis Georgia2ORCID,Poninghaus Stefan1,Singhvi Divya3,Skali Lami Omar4,Wei Lua Jiong1

Affiliation:

1. Wayfair, Boston, Massachusetts 02116;

2. Operations Management, Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142;

3. Stern School of Business, New York University, New York, New York 10012;

4. Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142

Abstract

Problem definition: Online retailers provide recommendations of ancillary services when a customer is making a purchase. Our goal is to predict the net present value (NPV) of these services, estimate the probability of a customer subscribing to each of them depending on what services are offered to them, and ultimately prescribe the optimal personalized service recommendation that maximizes the expected long-term revenue. Methodology/results: We propose a novel method called cluster-while-classify (CWC), which jointly groups observations into clusters (segments) and learns a distinct classification model within each of these segments to predict the sign-up propensity of services based on customer, product, and session-level features. This method is competitive with the industry state of the art and can be represented in a simple decision tree. This makes CWC interpretable and easily actionable. We then use double machine learning (DML) and causal forests to estimate the NPV for each service and, finally, propose an iterative optimization strategy—that is, scalable and efficient—to solve the personalized ancillary service recommendation problem. CWC achieves a competitive 74% out-of-sample accuracy over four possible outcomes and seven different combinations of services for the propensity predictions. This, alongside the rest of the personalized holistic optimization framework, can potentially result in an estimated 2.5%–3.5% uplift in the revenue based on our numerical study. Managerial implications: The proposed solution allows online retailers in general and Wayfair in particular to curate their service offerings and optimize and personalize their service recommendations for the stakeholders. This results in a simplified, streamlined process and a significant long-term revenue uplift.History: This paper has been accepted as part of the 2021 Manufacturing & Service Operations Management Practice-Based Research Competition.Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2020.0491 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3