Resource Allocation with Sigmoidal Demands: Mobile Healthcare Units and Service Adoption

Author:

Alban Andres1ORCID,Blaettchen Philippe1ORCID,de Vries Harwin2ORCID,Van Wassenhove Luk N.1ORCID

Affiliation:

1. Technology and Operations Management area, INSEAD, 77305 Fontainebleau, France;

2. Department of Technology and Operations Management, Rotterdam School of Management, Erasmus University, 3062 PA Rotterdam, Netherlands

Abstract

Problem definition: Achieving broad access to health services (a target within the sustainable development goals) requires reaching rural populations. Mobile healthcare units (MHUs) visit remote sites to offer health services to these populations. However, limited exposure, health literacy, and trust can lead to sigmoidal (S-shaped) adoption dynamics, presenting a difficult obstacle in allocating limited MHU resources. It is tempting to allocate resources in line with current demand, as seen in practice. However, to maximize access in the long term, this may be far from optimal, and insights into allocation decisions are limited. Academic/practical relevance: We present a formal model of the long-term allocation of MHU resources as the optimization of a sum of sigmoidal functions. We develop insights into optimal allocation decisions and propose pragmatic methods for estimating our model’s parameters from data available in practice. We demonstrate the potential of our approach by applying our methods to family planning MHUs in Uganda. Methodology: Nonlinear optimization of sigmoidal functions and machine learning, especially gradient boosting, are used. Results: Although the problem is NP-hard, we provide closed form solutions to particular cases of the model that elucidate insights into the optimal allocation. Operationalizable heuristic allocations, grounded in these insights, outperform allocations based on current demand. Our estimation approach, designed for interpretability, achieves better predictions than standard methods in the application. Managerial implications: Incorporating the future evolution of demand, driven by community interaction and saturation effects, is key to maximizing access with limited resources. Instead of proportionally assigning more visits to sites with high current demand, a group of sites should be prioritized. Optimal allocation among prioritized sites aims at equalizing demand at the end of the planning horizon. Therefore, more visits should generally be allocated to sites where the cumulative demand potential is higher and counterintuitively, often those where demand is currently lower.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3