Adaptive Two-Stage Stochastic Programming with an Analysis on Capacity Expansion Planning Problem

Author:

Basciftci Beste1ORCID,Ahmed Shabbir2,Gebraeel Nagi2

Affiliation:

1. Department of Business Analytics, Tippie College of Business, University of Iowa, Iowa City, Iowa 52242;

2. H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract

Problem definition: Multistage stochastic programming is a well-established framework for sequential decision making under uncertainty by seeking policies that can be dynamically adjusted as uncertainty is realized. Often, for example, because of contractual constraints, such flexible policies are not desirable, and the decision maker may need to commit to a set of actions for a certain number of periods. Two-stage stochastic programming might be better suited to such settings, where first-stage decisions do not adapt to the uncertainty realized. In this paper, we propose a novel alternative approach, named as adaptive two-stage stochastic programming, where each component of the decision policy requiring limited flexibility has its own revision point, a period prior to which the decisions are determined at the beginning of the planning until this revision point, and after which they are revised for adjusting to the uncertainty realized thus far until the end of the planning. We then analyze this approach over the capacity expansion planning problem, that may require limited flexibility over expansion decisions. Methodology/results: We provide a generic mixed-integer programming formulation for the adaptive two-stage stochastic programming problem with finite support, in particular, for scenario trees, and show that this problem is NP-hard in general. Next, we focus on the capacity expansion planning problem and derive bounds on the value of adaptive two-stage programming in comparison with the two-stage and multistage approaches in terms of revision points. We propose several heuristic solution algorithms based on this bound analysis. These algorithms either provide approximation guarantees or computational advantages in solving the resulting adaptive two-stage stochastic problem. Managerial implications: We provide insights on the choice of the revision times based on our analytical analysis. We further present an extensive computational study on a generation capacity expansion planning problem with different generation resources including renewable energy. We demonstrate the value of adopting adaptive two-stage approach against the existing policies under limited flexibility and highlight the efficiency of the proposed heuristics along with practical implications on the studied problem. Funding: This work was supported by the National Science Foundation [Grant 1633196] and the Office of Naval Research [Grant N00014-18-1-2075]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2023.0157 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3