Fixing Inventory Inaccuracies at Scale

Author:

Farias Vivek F.1,Li Andrew A.2,Peng Tianyi3ORCID

Affiliation:

1. Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142;

2. Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213;

3. Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

Problem definition: Inaccurate records of inventory occur frequently and, by some measures, cost retailers approximately 4% in annual sales. Detecting inventory inaccuracies manually is cost-prohibitive, and existing algorithmic solutions rely almost exclusively on learning from longitudinal data, which is insufficient in the dynamic environment induced by modern retail operations. Instead, we propose a solution based on cross-sectional data over stores and stock-keeping units (SKUs), viewing inventory inaccuracies as a problem of identifying anomalies in a (low-rank) Poisson matrix. State-of-the-art approaches to anomaly detection in low-rank matrices apparently fall short. Specifically, from a theoretical perspective, recovery guarantees for these approaches require that nonanomalous entries be observed with vanishingly small noise (which is not the case in our problem and, indeed, in many applications). Methodology/results: So motivated, we propose a conceptually simple entrywise approach to anomaly detection in low-rank Poisson matrices. Our approach accommodates a general class of probabilistic anomaly models. We show that the cost incurred by our algorithm approaches that of an optimal algorithm at a min-max optimal rate. Using synthetic data and real data from a consumer goods retailer, we show that our approach provides up to a 10× cost reduction over incumbent approaches to anomaly detection. Along the way, we build on recent work that seeks entrywise error guarantees for matrix completion, establishing such guarantees for subexponential matrices, a result of independent interest. Managerial implications: By utilizing cross-sectional data at scale, our novel approach provides a practical solution to the issue of inventory inaccuracies in retail operations. Our method is cost-effective and can help managers detect inventory inaccuracies quickly, leading to increased sales and improved customer satisfaction. In addition, the entrywise error guarantees that we establish are of interest to academics working on matrix-completion problems. History: This paper was selected for Fast Track in M&SOM from the 2022 MSOM Supply Chain Management SIG Conference. Funding: Financial support from the National Science Foundation Division of Civil, Mechanical, and Manufacturing Innovation [Grant CMMI 1727239] is gratefully acknowledged. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0146 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3