Urban Bike Lane Planning with Bike Trajectories: Models, Algorithms, and a Real-World Case Study

Author:

Liu Sheng1ORCID,Shen Zuo-Jun Max23ORCID,Ji Xiang4

Affiliation:

1. Rotman School of Management, University of Toronto, Toronto, Ontario M5S 3E6, Canada;

2. College of Engineering, University of California, Berkeley, Berkeley, California 94720;

3. Faculty of Engineering, Faculty of Business and Economics, University of Hong Kong, Hong Kong, China;

4. Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544

Abstract

Problem definition: We study an urban bike lane planning problem based on the fine-grained bike trajectory data, which are made available by smart city infrastructure, such as bike-sharing systems. The key decision is where to build bike lanes in the existing road network. Academic/practical relevance: As bike-sharing systems become widespread in the metropolitan areas over the world, bike lanes are being planned and constructed by many municipal governments to promote cycling and protect cyclists. Traditional bike lane planning approaches often rely on surveys and heuristics. We develop a general and novel optimization framework to guide the bike lane planning from bike trajectories. Methodology: We formalize the bike lane planning problem in view of the cyclists’ utility functions and derive an integer optimization model to maximize the utility. To capture cyclists’ route choices, we develop a bilevel program based on the Multinomial Logit model. Results: We derive structural properties about the base model and prove that the Lagrangian dual of the bike lane planning model is polynomial-time solvable. Furthermore, we reformulate the route-choice-based planning model as a mixed-integer linear program using a linear approximation scheme. We develop tractable formulations and efficient algorithms to solve the large-scale optimization problem. Managerial implications: Via a real-world case study with a city government, we demonstrate the efficiency of the proposed algorithms and quantify the trade-off between the coverage of bike trips and continuity of bike lanes. We show how the network topology evolves according to the utility functions and highlight the importance of understanding cyclists’ route choices. The proposed framework drives the data-driven urban-planning scheme in smart city operations management.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparing different methods for connecting bike lanes to generate a complete bike network and identify potential complete streets in Atlanta;Journal of Cycling and Micromobility Research;2024-12

2. Operations management of shared transport: research status and prospect;Journal of Data, Information and Management;2023-10-07

3. A target-based optimization model for bike-sharing systems: From the perspective of service efficiency and equity;Transportation Research Part B: Methodological;2023-01

4. The Bicycle Network Improvement Problem;Journal of Transportation Engineering, Part A: Systems;2022-11

5. Introduction to the Special Section on Smart City Operations;Manufacturing & Service Operations Management;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3