Adaptive Learning of Drug Quality and Optimization of Patient Recruitment for Clinical Trials with Dropouts

Author:

Tian Zhili1ORCID,Han Weidong2,Powell Warren B.2

Affiliation:

1. Department of Management and Decision Sciences, Wall College of Business Administration, Coastal Carolina University, Conway, South Carolina 29528;

2. Department of Operations Research and Financial Engineering, Princeton University, Princeton, New Jersey 08544

Abstract

Problem definition: Clinical trials are crucial to new drug development. This study investigates optimal patient enrollment in clinical trials with interim analyses, which are analyses of treatment responses from patients at intermediate points. Our model considers uncertainties in patient enrollment and drug treatment effectiveness. We consider the benefits of completing a trial early and the cost of accelerating a trial by maximizing the net present value of drug cumulative profit. Academic/practical relevance: Clinical trials frequently account for the largest cost in drug development, and patient enrollment is an important problem in trial management. Our study develops a dynamic program, accurately capturing the dynamics of the problem, to optimize patient enrollment while learning the treatment effectiveness of an investigated drug. Methodology: The model explicitly captures both the physical state (enrolled patients) and belief states about the effectiveness of the investigated drug and a standard treatment drug. Using Bayesian updates and dynamic programming, we establish monotonicity of the value function in state variables and characterize an optimal enrollment policy. We also introduce, for the first time, the use of backward approximate dynamic programming (ADP) for this problem class. We illustrate the findings using a clinical trial program from a leading firm. Our study performs sensitivity analyses of the input parameters on the optimal enrollment policy. Results: The value function is monotonic in cumulative patient enrollment and the average responses of treatment for the investigated drug and standard treatment drug. The optimal enrollment policy is nondecreasing in the average response from patients using the investigated drug and is nonincreasing in cumulative patient enrollment in periods between two successive interim analyses. The forward ADP algorithm (or backward ADP algorithm) exploiting the monotonicity of the value function reduced the run time from 1.5 months using the exact method to a day (or 20 minutes) within 4% of the exact method. Through an application to a leading firm’s clinical trial program, the study demonstrates that the firm can have a sizable gain of drug profit following the optimal policy that our model provides. Managerial implications: We developed a new model for improving the management of clinical trials. Our study provides insights of an optimal policy and insights into the sensitivity of value function to the dropout rate and prior probability distribution. A firm can have a sizable gain in the drug’s profit by managing its trials using the optimal policies and the properties of value function. We illustrated that firms can use the ADP algorithms to develop their patient enrollment strategies.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3