Managing the Personalized Order-Holding Problem in Online Retailing

Author:

Chen Shouchang1ORCID,Yan Zhenzhen2ORCID,Lim Yun Fong3ORCID

Affiliation:

1. School of Management, Zhejiang University, Hangzhou 310058, China;

2. School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore;

3. Lee Kong Chian School of Business, Singapore Management University, Singapore 178899, Singapore

Abstract

Problem definition: A significant percentage of online consumers place consecutive orders within a short duration. To reduce the total order arrangement cost, an online retailer may consolidate consecutive orders from the same consumer. We investigate how long the retailer should hold the consumer’s orders before sending them to a third-party logistics provider (3PL) for processing. In this order-holding problem, we optimize the holding time to balance the total order arrangement cost and the potential delay in delivery. Methodology/results: We model the order-holding problem as a Markov decision process. We show that the optimal order-holding decisions follow a threshold-type policy that is straightforward to implement: Hold any pending orders if the holding time is within a threshold or send them to the 3PL otherwise. Whenever the consumer places a new order, the holding time is reset, and the threshold is updated based on a cumulative set of the past consecutive orders in the consumer’s shopping journey. Using a consumer’s sequential decision model, we personalize the threshold by finding its closed-form expression in the consumer’s order features. We determine the model’s coefficients and evaluate the threshold-type policy using the data of the 2020 MSOM Data Driven Research Challenge. Extensive numerical experiments suggest that the personalized threshold-type policy outperforms two commonly used benchmarks by having fewer order arrangements or shorter holding times. Furthermore, personalizing the order-holding decisions is significantly more valuable for “enterprise” customers. Managerial implications: Our research suggests a higher threshold for consumers who are more likely to place consecutive orders within a short duration. The consumers’ demographic information has a significant effect on the threshold. Specifically, the threshold is higher for “plus” consumers, female consumers, and consumers in the age group of 16–25 years. The threshold for tier 1 cities is lower than that for tier 2 to tier 4 cities but higher than that for tier 5 cities. History: This paper has been accepted as part of the 2020 MSOM Data Driven Challenge. Funding: This work was supported by the National Natural Science Foundation of China [Grants 71931009, 72201237, and 72231009], the Research Grants Council of Hong Kong [Grants 15501920 and 15501221], the Singapore Ministry of Education Academic Research Fund [Tier 1, Grant RG17/21; Tier 2, Grant MOE2019-T2-1-045], the Association of South-East Asian Nations Business Research Initiative Grant [Grant G17C20421], and the Neptune Orient Lines [Fellowship NOL21RP04]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2023.1201 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3