Hiding in the Herd: The Product Recall Clustering Phenomenon

Author:

Mukherjee Ujjal K.1ORCID,Ball George P.2ORCID,Wowak Kaitlin D.3ORCID,Natarajan Karthik V.4ORCID,Miller Jason W.5ORCID

Affiliation:

1. Department of Business Administration, Gies College of Business, University of Illinois Urbana-Champaign, Champaign, Illinois 61820;

2. Operations and Decision Technologies Department, Kelley School of Business, Indiana University, Bloomington, Indiana 47405;

3. Department of IT, Analytics, and Operations, Mendoza College of Business, University of Notre Dame, Notre Dame, Indiana 46556;

4. Supply Chain and Operations Department, Carlson School of Management, University of Minnesota, Minneapolis, Minnesota 55455;

5. Supply Chain Management Department, Eli Broad College of Business, Michigan State University, East Lansing, Michigan 48824

Abstract

Problem definition: Product recalls have serious consequences for firms and consumers. Little is known, however, about how firms manage the timing of recalls and how this timing influences the financial consequences of recalls. In this study, we provide evidence for a previously unknown phenomenon: recall clustering, a collection of recalls within close temporal proximity in which a leading recall (the first recall in a cluster) excites following recalls (subsequent recalls in a cluster). We also investigate how the stock market penalizes firms differently depending upon their position within the recall cluster. Academic/practical relevance: By demonstrating that auto firms cluster their recalls and that the market penalizes firms differently based on the position of a recall within a cluster, we contribute to the literature that investigates recall timing and stock market event studies and provide guidance for regulators who oversee auto recalls and managers who make recall decisions. Methodology: We first develop analytical predictions using a dynamic game theoretic model to motivate our hypotheses. We then examine empirical support for our hypotheses by analyzing 3,117 auto recalls across 48 years using a Hawkes process model. Hawkes process models are designed to examine self-excitation of events across time and can be used to investigate recall clustering, while categorizing recalls as leading or following within a cluster. Finally, we use the leading and following recall designations obtained from the Hawkes process model in an event study to examine how the stock market effects of a recall vary depending on its position within a cluster. Results: We find that 73% of recalls occur in clusters, and they form after a 16-day gap in recall announcements. On average, clusters last for 34 days and are comprised of 7.6 following recalls announced after the leading recall. Leading recalls are associated with as high as a 67% larger stock market penalty than following recalls. Further, we find that the stock market benefit realized by a following recall weakens as the time since the leading recall increases and that the stock market penalty faced by a leading recall grows as the time since the end of the last cluster increases. Managerial Implications: Our findings lead to a key implication for regulators who oversee auto recalls by demonstrating evidence of recall clustering and the underlying stock market effects that are attributable to it. We provide a cost-neutral policy recommendation for the National Highway Traffic and Safety Administration that should limit recall clustering.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3