Decarbonizing OCP

Author:

Bertsimas Dimitris1ORCID,Cory-Wright Ryan2ORCID,Digalakis Vassilis3ORCID

Affiliation:

1. Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142;

2. Department of Analytics, Marketing and Operations, Imperial College Business School, Imperial College London, London SW7 2AZ, United Kingdom;

3. Department of Information Systems and Operations Management, HEC Paris, 78350 Jouy-en-Josas, France

Abstract

Problem definition: We present our collaboration with the OCP Group, one of the world’s largest producers of phosphate and phosphate-based products, in support of a green initiative designed to reduce OCP’s carbon emissions significantly. We study the problem of decarbonizing OCP’s electricity supply by installing a mixture of solar panels and batteries to minimize its time-discounted investment cost, plus the cost of satisfying its remaining demand via the Moroccan national grid. OCP is currently designing its renewable investment strategy, using insights gleaned from our optimization model, and has pledged to invest 130 billion Moroccan dirham (MAD) (approximately 13 billion U.S. dollars (USD)) in a green initiative by 2027, a subset of which involves decarbonization. Methodology/results: We immunize our model against deviations between forecast and realized solar generation output via a combination of robust and distributionally robust optimization. To account for variability in daily solar generation, we propose a data-driven robust optimization approach that prevents excessive conservatism by averaging across uncertainty sets. To protect against variability in seasonal weather patterns induced by climate change, we invoke distributionally robust optimization techniques. Under a 10 billion MAD (approximately 1 billion USD) investment by OCP, the proposed methodology reduces the carbon emissions that arise from OCP’s energy needs by more than 70%, while generating a net present value (NPV) of 5 billion MAD over a 20-year planning horizon. Moreover, a 20 billion MAD investment induces a 95% reduction in carbon emissions and generates an NPV of around 2 billion MAD. Managerial implications: To fulfill the Paris climate agreement, rapidly decarbonizing the global economy in a financially sustainable fashion is imperative. Accordingly, this work develops a robust optimization methodology that enables OCP to decarbonize at a profit by purchasing solar panels and batteries. Moreover, the methodology could be applied to decarbonize other industrial consumers. Indeed, our approach suggests that decarbonization’s profitability depends on solar capacity factors, energy prices, and borrowing costs. History: This paper has been accepted as part of the 2023 Manufacturing & Service Operations Management Practice-Based Research Competition. Supplemental Material: The e-companion is available at https://doi.org/10.1287/msom.2022.0467 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3