Elicitability of Instance and Object Ranking

Author:

Werner Tino1ORCID

Affiliation:

1. Institute for Mathematics, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany

Abstract

Assessing the quality of a forecasting model crucially depends on a proper scoring rule or suitable loss function. As for point forecasts, the existence of a strictly consistent loss function that allows for a fair comparison of competing forecast models has to be guaranteed, which means that the corresponding statistical functional has to be elicitable. We consider instance and object ranking problems that intend to correctly predict the ordering of instances in a data set. A ranking prediction is naturally identified with a point forecast in the respective symmetric group, that is, the forecaster predicts one single permutation of the row indices. We show that, in the presence of ties, this strategy does not allow for strictly consistent scoring functions because of multiple true permutations. Those multiple optima cannot be entirely covered by a single point forecast, which causes all corresponding optima to be minimizers of standard scoring functions that operate on symmetric groups, so these scoring functions are not strictly consistent. As a remedy, we consider accurately accounting for ties. This is done by treating each configuration of clear orderings and ties as an additional category, which induces extended decision spaces with a clearly defined single optimum. Because these decision spaces are still finite, each type of instance ranking problem that we consider in this work and corresponding ranking functional, mapping into a symmetric group, can be identified with a certain classification problem and corresponding classification functional, mapping into one of our extended decision spaces, which is elicitable.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Decision Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantitative robustness of instance ranking problems;Annals of the Institute of Statistical Mathematics;2022-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3