Optimal Off-line Experimentation for Games

Author:

Allen Theodore T.1ORCID,Hernandez Olivia K.1,Alomair Abdullah1

Affiliation:

1. Integrated Systems Engineering, The Ohio State University, Columbus, Ohio 43210

Abstract

Many business situations can be called “games” because outcomes depend on multiple decision makers with differing objectives. Yet, in many cases, the payoffs for all combinations of player options are not available, but the ability to experiment off-line is available. For example, war-gaming exercises, test marketing, cyber-range activities, and many types of simulations can all be viewed as off-line gaming-related experimentation. We address the decision problem of planning and analyzing off-line experimentation for games with an initial procedure seeking to minimize the errors in payoff estimates. Then, we provide a sequential algorithm with reduced selections from option combinations that are irrelevant to evaluating candidate Nash, correlated, cumulative prospect theory or other equilibria. We also provide an efficient formula to estimate the chance that given Nash equilibria exists, provide convergence guarantees relating to general equilibria, and provide a stopping criterion called the estimated expected value of perfect off-line information (EEVPOI). The EEVPOI is based on bounded gains in expected utility from further off-line experimentation. An example of using a simulation model to illustrate all the proposed methods is provided based on a cyber security capture-the-flag game. The example demonstrates that the proposed methods enable substantial reductions in both the number of test runs (half) compared with a full factorial and the computational time for the stopping criterion.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Decision Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3