Hide-and-Seek Game with Capacitated Locations and Imperfect Detection

Author:

Bahamondes Bastián1ORCID,Dahan Mathieu1ORCID

Affiliation:

1. H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract

We consider a variant of the hide-and-seek game in which a seeker inspects multiple hiding locations to find multiple items hidden by a hider. Each hiding location has a maximum hiding capacity and a probability of detecting its hidden items when an inspection by the seeker takes place. The objective of the seeker (respectively, hider) is to minimize (respectively, maximize) the expected number of undetected items. This model is motivated by strategic inspection problems, where a security agency is tasked with coordinating multiple inspection resources to detect and seize illegal commodities hidden by a criminal organization. To solve this large-scale zero-sum game, we leverage its structure and show that its mixed-strategy Nash equilibria can be characterized using their unidimensional marginal distributions, which are pure equilibria of a lower dimensional continuous zero-sum game. This leads to a two-step approach for efficiently solving our hide-and-seek game: First, we analytically solve the continuous game and derive closed-form expressions of the equilibrium marginal distributions. Second, we design a combinatorial algorithm to coordinate the players’ resources and compute equilibrium mixed strategies that satisfy the marginal distributions. We show that this solution approach computes a Nash equilibrium of the hide-and-seek game in quadratic time with linear support. Our analysis reveals novel equilibrium behaviors driven by a complex interplay between the game parameters, captured by our closed-form solutions. Funding: This work was supported by the Georgia Tech Stewart Fellowship and the Georgia Tech New Faculty Start Up Grant. Supplemental Material: The online appendix is available at https://doi.org/10.1287/deca.2023.0012 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Decision Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3