Affiliation:
1. Ivy College of Business, Iowa State University, Ames, Iowa 50011
Abstract
The redundancy allocation problem (RAP) aims to find an optimal allocation of redundant components subject to resource constraints. In this paper, mixed integer linear programming (MILP) models and MILP-based algorithms are proposed for complex system reliability redundancy allocation problem with mixed components, where the system have bridges or interconnecting subsystems and each subsystem can have mixed types of components. Unlike the other algorithms in the literature, the proposed MILP models view the problem from a different point of view and approximate the nonconvex nonlinear system reliability function of a complex system using random samples. The solution to the MILP converges to the optimal solution of the original problem as sample size increases. In addition, data aggregation-based algorithms are proposed to improve the solution time and quality based on the proposed MILP models. A computational experiment shows that the proposed models and algorithms converge to the optimal or best-known solution as sample size increases. The proposed algorithms outperform popular metaheuristic algorithms in the literature.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献