Worst-Case Expected Shortfall with Univariate and Bivariate Marginals

Author:

Dhara Anulekha1,Das Bikramjit2ORCID,Natarajan Karthik2ORCID

Affiliation:

1. Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109;

2. Engineering Systems and Design, Singapore University of Technology and Design, Singapore 487372

Abstract

Computing and minimizing the worst-case bound on the expected shortfall risk of a portfolio given partial information on the distribution of the asset returns is an important problem in risk management. One such bound that been proposed is for the worst-case distribution that is “close” to a reference distribution where closeness in distance among distributions is measured using [Formula: see text]-divergence. In this paper, we advocate the use of such ambiguity sets with a tree structure on the univariate and bivariate marginal distributions. Such an approach has attractive modeling and computational properties. From a modeling perspective, this provides flexibility for risk management applications where there are many more choices for bivariate copulas in comparison with multivariate copulas. Bivariate copulas form the basis of the nested tree structure that is found in vine copulas. Because estimating a vine copula is fairly challenging, our approach provides robust bounds that are valid for the tree structure that is obtained by truncating the vine copula at the top level. The model also provides flexibility in tackling instances when the lower dimensional marginal information is inconsistent that might arise when multiple experts provide information. From a computational perspective, under the assumption of a tree structure on the bivariate marginals, we show that the worst-case expected shortfall is computable in polynomial time in the input size when the distributions are discrete. The corresponding distributionally robust portfolio optimization problem is also solvable in polynomial time. In contrast, under the assumption of independence, the expected shortfall is shown to be #P-hard to compute for discrete distributions. We provide numerical examples with simulated and real data to illustrate the quality of the worst-case bounds in risk management and portfolio optimization and compare it with alternate probabilistic models such as vine copulas and Markov tree distributions.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discrete Optimal Transport with Independent Marginals is #P-Hard;SIAM Journal on Optimization;2023-06-01

2. Robust Sourcing Under Multilevel Supply Risks: Analysis of Random Yield and Capacity;INFORMS Journal on Computing;2023-01

3. Distributionally robust optimization through the lens of submodularity;SSRN Electronic Journal;2023

4. Frameworks and Results in Distributionally Robust Optimization;Open Journal of Mathematical Optimization;2022-07-27

5. Input Uncertainty in Stochastic Simulation;The Palgrave Handbook of Operations Research;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3