Robustness of Stochastic Optimal Control to Approximate Diffusion Models Under Several Cost Evaluation Criteria

Author:

Pradhan Somnath1ORCID,Yüksel Serdar1ORCID

Affiliation:

1. Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario K7L 3N6, Canada

Abstract

In control theory, typically a nominal model is assumed based on which an optimal control is designed and then applied to an actual (true) system. This gives rise to the problem of performance loss because of the mismatch between the true and assumed models. A robustness problem in this context is to show that the error because of the mismatch between a true and an assumed model decreases to zero as the assumed model approaches the true model. We study this problem when the state dynamics of the system are governed by controlled diffusion processes. In particular, we discuss continuity and robustness properties of finite and infinite horizon α-discounted/ergodic optimal control problems for a general class of nondegenerate controlled diffusion processes as well as for optimal control up to an exit time. Under a general set of assumptions and a convergence criterion on the models, we first establish that the optimal value of the approximate model converges to the optimal value of the true model. We then establish that the error because of the mismatch that occurs by application of a control policy, designed for an incorrectly estimated model, to a true model decreases to zero as the incorrect model approaches the true model. We see that, compared with related results in the discrete-time setup, the continuous-time theory lets us utilize the strong regularity properties of solutions to optimality (Hamilton–Jacobi–Bellman) equations, via the theory of uniformly elliptic partial differential equations, to arrive at strong continuity and robustness properties. Funding: The research of S. Yüksel was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3