An Augmented Lagrangian Approach to Conically Constrained Nonmonotone Variational Inequality Problems

Author:

Zhao Lei123,Zhu Daoli45,Zhang Shuzhong6ORCID

Affiliation:

1. Institute of Translational Medicine and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China;

2. Xiangfu Laboratory, Jiashan 314100, China;

3. Shanghai Artificial Intelligence Research Institute, Shanghai 201109, China;

4. Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200030, China;

5. School of Data Science, Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, Shenzhen 518172, China;

6. Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, Minnesota 55455

Abstract

In this paper we consider a nonmonotone (mixed) variational inequality (VI) model with (nonlinear) convex conic constraints. Through developing an equivalent Lagrangian function-like primal-dual saddle point system for the VI model in question, we introduce an augmented Lagrangian primal-dual method, called ALAVI (Augmented Lagrangian Approach to Variational Inequality) in the paper, for solving a general constrained VI model. Under an assumption, called the primal-dual variational coherence condition in the paper, we prove the convergence of ALAVI. Next, we show that many existing generalized monotonicity properties are sufficient—though by no means necessary—to imply the abovementioned coherence condition and thus are sufficient to ensure convergence of ALAVI. Under that assumption, we further show that ALAVI has in fact an [Formula: see text] global rate of convergence where k is the iteration count. By introducing a new gap function, this rate further improves to be [Formula: see text] if the mapping is monotone. Finally, we show that under a metric subregularity condition, even if the VI model may be nonmonotone, the local convergence rate of ALAVI improves to be linear. Numerical experiments on some randomly generated highly nonlinear and nonmonotone VI problems show the practical efficacy of the newly proposed method. Funding: L. Zhao and D. Zhu were partially supported by the Major Project of the National Natural Science Foundation of China [Grant 72293582], the National Key R&D Program of China [Grant 2023YFA0915202], and the Fundamental Research Funds for the Central Universities (the Interdisciplinary Program of Shanghai Jiao Tong University) [Grant YG2024QNA36]. L. Zhao was partially supported by the Startup Fund for Young Faculty at SJTU (SFYF at SJTU) [Grant 22X010503839].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3