Bounding Residence Times for Atomic Dynamic Routings

Author:

Cao Zhigang1ORCID,Chen Bo2ORCID,Chen Xujin34ORCID,Wang Changjun3ORCID

Affiliation:

1. School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China;

2. Warwick Business School, University of Warwick, Coventry CV4 7AL, United Kingdom;

3. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;

4. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

In this paper, we are concerned with bounding agents’ residence times in the network for a broad class of atomic dynamic routings. We explore novel token techniques to circumvent direct analysis on complicated chain effects of dynamic routing choices. Even though agents may enter the network over time for an infinite number of periods, we prove that under a mild condition, the residence time of every agent is upper bounded (by a network-dependent constant plus the total number of agents inside the network at the entry time of the agent). Applying this result to three game models of atomic dynamic routing in the recent literature, we establish that the residence times of selfish agents in a series-parallel network with a single origin-destination pair are upper bounded at equilibrium, provided the number of incoming agents at each time point does not exceed the network capacity (i.e., the smallest total capacity of edges in the network whose removal separates the origin from the destination).

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph-model Based Optimization of Shelter Hospitals: Integrating MILP for Efficient Layout and Deployment;2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS);2024-05-17

2. The Price of Anarchy for Instantaneous Dynamic Equilibria;Mathematics of Operations Research;2023-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3