The Efficiency of Resource Allocation Mechanisms for Budget-Constrained Users

Author:

Caragiannis Ioannis1ORCID,Voudouris Alexandros A.2ORCID

Affiliation:

1. Department of Computer Engineering and Informatics, University of Patras, 26504 Rion, Greece;

2. Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom

Abstract

We study the efficiency of mechanisms for allocating a divisible resource. Given scalar signals submitted by all users, such a mechanism decides the fraction of the resource that each user will receive and a payment that will be collected from her. Users are self-interested and aim to maximize their utility (defined as their value for the resource fraction they receive minus their payment). Starting with the seminal work of Johari and Tsitsiklis, a long list of papers studied the price of anarchy (in terms of the social welfare—the total users’ value) of resource allocation mechanisms for a variety of allocation and payment rules. Here, we further assume that each user has a budget constraint that invalidates strategies that yield a payment that is higher than the user’s budget. This subtle assumption, which is arguably more realistic, constitutes the traditional price of anarchy analysis meaningless as the set of equilibria may change drastically and their social welfare can be arbitrarily far from optimal. Instead, we study the price of anarchy using the liquid welfare benchmark that measures efficiency taking budget constraints into account. We show a tight bound of 2 on the liquid price of anarchy of the well-known Kelly mechanism and prove that this result is essentially best possible among all multiuser resource allocation mechanisms. This comes in sharp contrast to the no-budget setting where there are mechanisms that considerably outperform Kelly in terms of social welfare and even achieve full efficiency. In our proofs, we exploit the particular structure of worst-case games and equilibria, which also allows us to design (nearly) optimal two-player mechanisms by solving simple differential equations.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3