Multiagent Online Learning in Time-Varying Games

Author:

Duvocelle Benoit1ORCID,Mertikopoulos Panayotis23ORCID,Staudigl Mathias4ORCID,Vermeulen Dries1

Affiliation:

1. Department of Quantitative Economics, Maastricht University, NL–6200 MD Maastricht, Netherlands;

2. Université Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France;

3. Criteo AI Lab, 38130 Echirolles, France;

4. Department of Advanced Computing Sciences, Maastricht University, NL–6200 MD Maastricht, Netherlands

Abstract

We examine the long-run behavior of multiagent online learning in games that evolve over time. Specifically, we focus on a wide class of policies based on mirror descent, and we show that the induced sequence of play (a) converges to a Nash equilibrium in time-varying games that stabilize in the long run to a strictly monotone limit, and (b) it stays asymptotically close to the evolving equilibrium of the sequence of stage games (assuming they are strongly monotone). Our results apply to both gradient- and payoff-based feedback—that is, when players only get to observe the payoffs of their chosen actions. Funding: This research was partially supported by the European Cooperation in Science and Technology COST Action [Grant CA16228] “European Network for Game Theory” (GAMENET). P. Mertikopoulos is grateful for financial support by the French National Research Agency (ANR) in the framework of the “Investissements d’avenir” program [Grant ANR-15-IDEX-02], the LabEx PERSYVAL [Grant ANR-11-LABX-0025-01], MIAI@Grenoble Alpes [Grant ANR-19-P3IA-0003], and the ALIAS [Grant ANR-19-CE48-0018-01].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3