Pipeline Interventions

Author:

Arunachaleswaran Eshwar Ram1,Kannan Sampath1,Roth Aaron1,Ziani Juba2ORCID

Affiliation:

1. University of Pennsylvania, Philadelphia, Pennsylvania 19104;

2. Georgia Institute of Technology, Atlanta, Georgia 30318

Abstract

We introduce the pipeline intervention problem, defined by a layered directed acyclic graph and a set of stochastic matrices governing transitions between successive layers. The graph is a stylized model for how people from different populations are presented opportunities, eventually leading to some reward. In our model, individuals are born into an initial position (i.e., some node in the first layer of the graph) according to a fixed probability distribution and then stochastically progress through the graph according to the transition matrices until they reach a node in the final layer of the graph; each node in the final layer has a reward associated with it. The pipeline intervention problem asks how to best make costly changes to the transition matrices governing people’s stochastic transitions through the graph subject to a budget constraint. We consider two objectives: social welfare maximization and a fairness-motivated maximin objective that seeks to maximize the value to the population (starting node) with the least expected value. We consider two variants of the maximin objective that turn out to be distinct, depending on whether we demand a deterministic solution or allow randomization. For each objective, we give an efficient approximation algorithm (an additive fully polynomial-time approximation scheme) for constant-width networks. We also tightly characterize the “price of fairness” in our setting: the ratio between the highest achievable social welfare and the social welfare consistent with a maximin optimal solution. Finally, we show that, for polynomial-width networks, even approximating the maximin objective to any constant factor is NP hard even for networks with constant depth. This shows that the restriction on the width in our positive results is essential.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3