Equilibria and Systemic Risk in Saturated Networks

Author:

Massai Leonardo1ORCID,Como Giacomo12,Fagnani Fabio1

Affiliation:

1. Dipartimento di Scienze Matematiche, Politecnico di Torino, 10129 Torino, Italy;

2. Department of Automatic Control, Lund University, SE-22100 Lund, Sweden

Abstract

We undertake a fundamental study of network equilibria modeled as solutions of fixed-point equations for monotone linear functions with saturation nonlinearities. The considered model extends one originally proposed to study systemic risk in networks of financial institutions interconnected by mutual obligations. It is one of the simplest continuous models accounting for shock propagation phenomena and cascading failure effects. This model also characterizes Nash equilibria of constrained quadratic network games with strategic complementarities. We first derive explicit expressions for network equilibria and prove necessary and sufficient conditions for their uniqueness, encompassing and generalizing results available in the literature. Then, we study jump discontinuities of the network equilibria when the exogenous flows cross certain regions of measure 0 representable as graphs of continuous functions. Finally, we discuss some implications of our results in the two main motivating applications. In financial networks, this bifurcation phenomenon is responsible for how small shocks in the assets of a few nodes can trigger major aggregate losses to the system and cause the default of several agents. In constrained quadratic network games, it induces a blow-up behavior of the sensitivity of Nash equilibria with respect to the individual benefits.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Clearing Payments in a Financial Contagion Model;SIAM Journal on Financial Mathematics;2024-06-03

2. A Stochastic Model for Cascading Failures in Financial Networks;IEEE Transactions on Control of Network Systems;2023-12

3. Clearing payments in dynamic financial networks;Automatica;2023-12

4. Optimal Intervention in Non-Binary Super-Modular Games;IEEE Control Systems Letters;2023

5. Clearing Payments in Dynamic Financial Networks;2022 IEEE Conference on Control Technology and Applications (CCTA);2022-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3