Flow Allocation Games

Author:

Bertschinger Nils1ORCID,Hoefer Martin2ORCID,Schmand Daniel3ORCID

Affiliation:

1. Frankfurt Institute of Advanced Studies, Goethe University Frankfurt, 60629 Frankfurt, Germany;

2. Institute for Computer Science, Goethe University Frankfurt, 60629 Frankfurt, Germany;

3. Center for Industrial Mathematics, University of Bremen, 28359 Bremen, Germany

Abstract

We study a game-theoretic variant of the maximum circulation problem. In a flow allocation game, we are given a directed flow network. Each node is a rational agent and can strategically allocate any incoming flow to the outgoing edges. Given the strategy choices of all agents, a maximal circulation that adheres to the chosen allocation strategies evolves in the network. Each agent wants to maximize the amount of flow through his or her node. Flow allocation games can be used to express strategic incentives of clearing in financial networks. We provide a cumulative set of results on the existence and computational complexity of pure Nash and strong equilibria as well as tight bounds on the (strong) prices of anarchy and stability. Our results show an interesting dichotomy. Ranking strategies over individual flow units allows us to obtain optimal strong equilibria for many objective functions. In contrast, more intuitive ranking strategies over edges can give rise to unfavorable incentive properties. Funding: This work was supported by Deutsche Forschungsgemeinschaft Research Group ADYN [411362735].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3