Convexification of Bilinear Terms over Network Polytopes

Author:

Khademnia Erfan1,Davarnia Danial1ORCID

Affiliation:

1. Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, Iowa 50011

Abstract

It is well-known that the McCormick relaxation for the bilinear constraint z = xy gives the convex hull over the box domains for x and y. In network applications where the domain of bilinear variables is described by a network polytope, the McCormick relaxation, also referred to as linearization, fails to provide the convex hull and often leads to poor dual bounds. We study the convex hull of the set containing bilinear constraints [Formula: see text] where xi represents the arc-flow variable in a network polytope, and yj is in a simplex. For the case where the simplex contains a single y variable, we introduce a systematic procedure to obtain the convex hull of the above set in the original space of variables, and show that all facet-defining inequalities of the convex hull can be obtained explicitly through identifying a special tree structure in the underlying network. For the generalization where the simplex contains multiple y variables, we design a constructive procedure to obtain an important class of facet-defining inequalities for the convex hull of the underlying bilinear set that is characterized by a special forest structure in the underlying network. Computational experiments conducted on different applications show the effectiveness of the proposed methods in improving the dual bounds obtained from alternative techniques. Funding: This work was supported by Air Force Office of Scientific Research [Grant FA9550-23-1-0183]; National Science Foundation, Division of Civil, Mechanical and Manufacturing Innovation [Grant 2338641]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2023.0001 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3